





Storage of Wood Pellet and Wood Chip Fuel and Carbon Monoxide Generation

**IOHA 2015** 

Andrew Simpson LFOH

### Introduction



- Since 2002 there have been at least nine fatalities world wide caused by carbon monoxide poisoning following entry into wood pellet storage areas.
- Domestic, commercial and industrial use of wood pellet boilers is now increasing in the UK.
- There is concern that the risks, particularly the release of carbon monoxide and absorption of oxygen during storage, are not understood.
- There are similar concerns over the use of wood chips.

# Project Aims



- Obtain information on how wood pellets and wood chips are stored in the UK.
- Assess risk management systems and controls.
- Measure gases and vapours in the stores, ventilation and the microbiological content of the fuel.





#### **Pellets**



## Chips



## Associated hazards

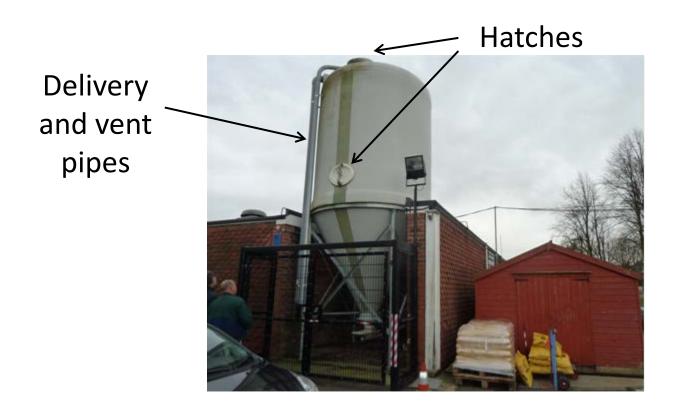


- Gaseous toxic emissions,
- Asphyxiating atmospheres,
- Airborne dust (including fungal spores and bacteria),
- Explosive atmospheres,
- Spontaneous combustion,
- Confined spaces,
- Boiler exhaust fumes and burn back.

# Methodology



- Seven site visits.
- Interviews with staff to assess storage practice, risk management systems and controls and user knowledge.
- Air change rate measurements (IR spectrometer and SF<sub>6</sub> tracer gas).
- Real time measurement of CO, CO<sub>2</sub>, O<sub>2</sub> and CH<sub>4</sub> over ~28 days.
- Microbiological analysis of bulk fuel samples.


## Sites



- Six small-medium sized boiler systems (<250 kW)
  with associated storage (<15 tonnes): five wood pellet
  and one wood chip,</li>
- One large scale wood pellet store (8000 tonnes),
- A purpose built store room,
- Converted barn, coal and grain stores,
- One GRP and two fabric silos.



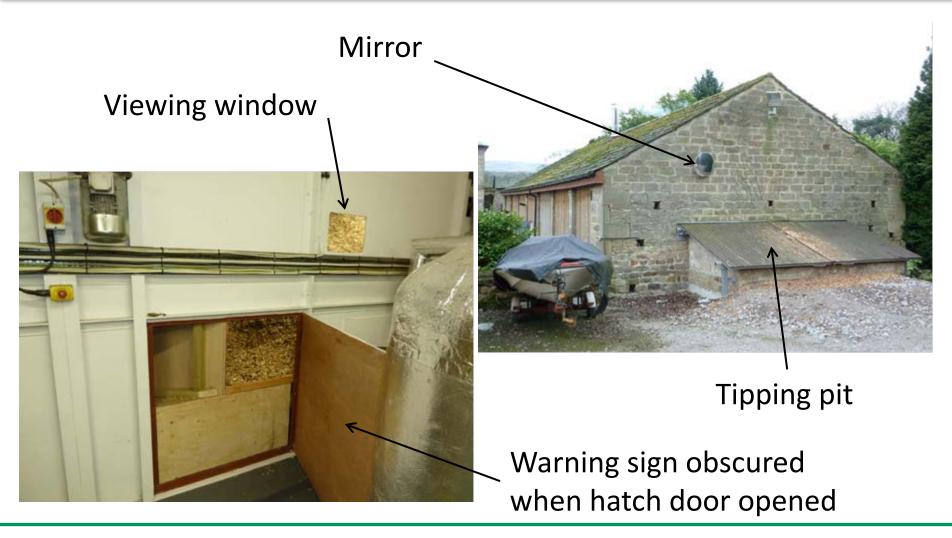




#### No measurements made

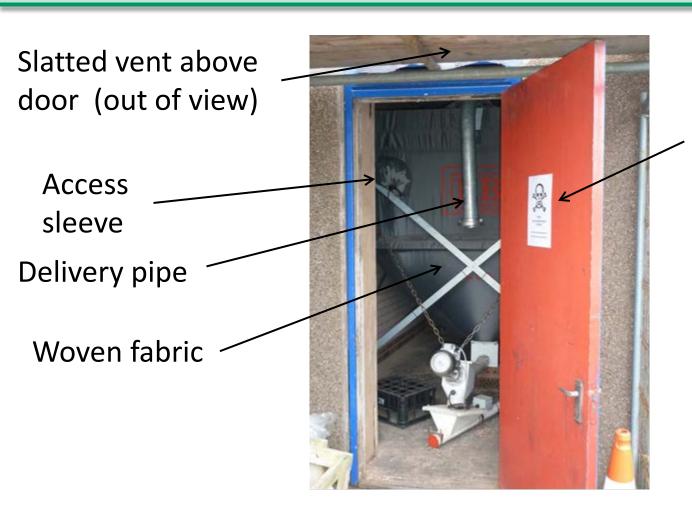







Viewing window






# Site 3, converted barn wood chip store





## Site 4, fabric silo in former coal store



Warning signs on both sides of door

Measurements taken adjacent to silo

## Site 5, converted coal store







Access hatch

Delivery pipe

Vent pipe & filter

No measurements made

## Site 6, fabric silo in boiler room



Anti-static woven plastic



Warning signs on both sides of boiler room door

Storage for cleaners

Measurements taken adjacent to silo

# Site 7, former grain store





Vent at both ends

Door left open for extra ventilation

Warning signs



### Controls



- All stores had restricted access.
- There was a limited and varied standard of warning signs.
- The small stores/silos did not have any planned ventilation.
- Personal CO monitors used at the large store, and domestic CO monitors at two small sites.
- No sites measured oxygen.

# Management



- There was limited knowledge of the hazards amongst operators of the small boiler systems.
- No risk assessments or safe working procedures at the small sites.
- Limited information concerning hazard from local suppliers of fuel or from companies installing and maintaining boiler systems.
- Large site had procedures, training, MSDS etc.

### Measurements



- No significant concentrations of carbon monoxide were detected (27 ppm peak, Site 7).
- Each site had a reasonably high ventilation rate
   (1.7 air changes/hr Site 2 to 20 air changes/hr Site 3).
- Very little microbiological contamination of pellets (not detected Sites 2 & 4; fungi 125 cfu/g, Site 7).
- Higher microbiological contamination of wood chips (bacteria 1.8 x 10<sup>7</sup> cfu/g, Site 3).

# Wood chips



- Wood chips are more likely to present fuel transfer problems requiring intervention by staff.
- Risk of composting is much greater because of higher levels of moisture and microbiological contamination.
- Dangerous atmospheres (raised CO and CO<sub>2</sub>, and low O<sub>2</sub>) may be produced by chemical decomposition as well as microbiological processes.

## Recommended controls



- Prevention of dangerous gas levels accumulating (including low oxygen) by ventilation.
- Recognition as a confined space, i.e. restricting access to authorised workers with the necessary training.
- Having a safe system of work, including supervision, air quality checks, etc.
- Giving consideration to areas where escaped gases may accumulate.





- HSL is grateful for the assistance of those companies who participated in this project and for the input received from HSE's Confined Spaces Network.
- The collection and analysis of samples and data were carried out by the field and laboratory based staff of HSL.

## Disclaimer



 This work was funded by the Health and Safety Executive (HSE). Opinions and conclusions expressed do not necessarily reflect HSE policy.